4,828 research outputs found

    A Hybrid Neural Network for Graph-Based Human Pose Estimation from 2D Images

    Full text link
    © 2013 IEEE. This paper investigates the problem of human pose estimation (HPE) from single 2-dimensional (2D) still images using a convolutional neural network (CNN). The aim was to train the CNN to analyze a 2D input image of a person to determine the person's pose. The CNN output was given in the form of a tree-structured graph of interconnected nodes representing 2D image coordinates of the person's body joints. A new data-driven tree-based model for HPE was validated and compared to the traditional anatomy-based tree-based structures. The effect of the number of nodes in anatomy-based tree-based structures on the accuracy of HPE was examined. The tree-based techniques were compared with non-tree-based methods using a common HPE framework and a benchmark dataset. As a result of this investigation, a new hybrid two-stage approach to the HPE estimation was proposed. In the first stage, a non-tree-based network was used to generate approximate results that were then passed for further refinement to the second, tree-based stage. Experimental results showed that both of the proposed methods, the data-driven tree-based model (TD_26) and the hybrid model (H_26_2B) lead to very similar results, obtaining 1% higher HPE accuracy compared to the benchmark anatomy-based model (TA_26) and 3% higher accuracy compared to the non-tree-based benchmark (NT_26_A). The best overall HPE results were obtained using the anatomy-based benchmark with the number of nodes increased from 26 to 50, which also significantly increased the computational cost

    Quality of Experience Comparison of Stereoscopic 3D Videos in Different Projection Devices: Flat Screen, Panoramic Screen and Virtual Reality Headset

    Full text link
    The use of Stereoscopic 3D (S3D) videos has been popular in commercial markets with ongoing developments in the field of visual entertainment in recent years. A wide variety of projection methods of 3D video content is currently available, such as projection to a panoramic screen and projection of omnidirectional video content from head mounted displays using Virtual Reality (VR) technology. This article investigates the Quality of Experience (QoE) and associated Visually Induced Motion Sickness (VIMS) caused by the viewing of S3D videos. The investigations used three different projection screens: a 3D flat screen, a 3D panoramic screen in a hemispherical shaped room and a VR headset. Several assessment methods including a Simulator Sickness Questionnaire (SSQ), ElectroEncephaloGraphy (EEG), and measurement tools for eye blink rate detection were applied to measure the QoE experienced by viewers. The SSQ scores were also compared with the behavioral data such as attention and meditation levels and enjoyment ratings acquired from different video content and projection screens. The results indicate that the projection screen is a key factor affecting the level of visual fatigue, VIMS and QoE assessments, which are discussed in-depth in the article

    Update on emergency contraception

    Get PDF
    pre-printEmergency contraception (EC) is any method used after sexual intercourse to prevent pregnancy. This article provides an overview of the history of EC methods and describes the current availability of oral and intrauterine EC. Oral forms include the Yuzpe regimen (combining ethinyl estradiol and levonorgestrel), levonorgestrel-only pills, and ulipristal acetate, which is a new emergency contraceptive drug recently approved by the US Food and Drug Administration. The copper T-380A intrauterine device can also be used for EC. Information about dosing, timing, access, and other considerations in the provision of EC is covered. Clinicians should be aware of all available options in order to counsel women in need of EC appropriately

    Thermal conductivity measurement of liquids in a microfluidic device

    Get PDF
    A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30–50°C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced

    Eggshell calcification after intrathyroidal hemorrhage of retrosternal thyroid

    Get PDF
    We report a rare event of old hemorrhage into a thyroid causing respiratory distress. A 67-year-old man with chronic cough and recent dysphagia was found to have a retrosternal mass extending into the visceral mediastinum on chest roentgenogram. A computed tomographic (CT) scan confirmed eggshell callcification, which was 53 × 53 × 80 mm in size a retrosternal thyroid mass and revealed significant tracheal deviation to the right due to an extensive mass surrounded by a calcificated capsule in the left lobe of the thyroid gland with extension to the upper mediastinum. He successfully underwent left lobectomy of the thyroid gland with sternotomy. The pathological examination revealed intrathyroidal hemorrhage of the thyroid gland with massive intracystic old bleeding

    General analysis of signals with two leptons and missing energy at the Large Hadron Collider

    Full text link
    A signal of two leptons and missing energy is challenging to analyze at the Large Hadron Collider (LHC) since it offers only few kinematical handles. This signature generally arises from pair production of heavy charged particles which each decay into a lepton and a weakly interacting stable particle. Here this class of processes is analyzed with minimal model assumptions by considering all possible combinations of spin 0, 1/2 or 1, and of weak iso-singlets, -doublets or -triplets for the new particles. Adding to existing work on mass and spin measurements, two new variables for spin determination and an asymmetry for the determination of the couplings of the new particles are introduced. It is shown that these observables allow one to independently determine the spin and the couplings of the new particles, except for a few cases that turn out to be indistinguishable at the LHC. These findings are corroborated by results of an alternative analysis strategy based on an automated likelihood test.Comment: 18 pages, 3 figures, LaTe

    Dynamic modeling of mean-reverting spreads for statistical arbitrage

    Full text link
    Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.Comment: 34 pages, 6 figures. Submitte

    Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    Get PDF
    Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context

    Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Get PDF
    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm)−1
    • …
    corecore